\(\int \frac {(d+e x) (2-x-2 x^2+x^3)}{(4-5 x^2+x^4)^2} \, dx\) [86]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 71 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {d-2 e}{12 (2+x)}-\frac {1}{18} (d+e) \log (1-x)+\frac {1}{48} (d+2 e) \log (2-x)+\frac {1}{6} (d-e) \log (1+x)-\frac {1}{144} (19 d-26 e) \log (2+x) \]

[Out]

1/12*(d-2*e)/(2+x)-1/18*(d+e)*ln(1-x)+1/48*(d+2*e)*ln(2-x)+1/6*(d-e)*ln(1+x)-1/144*(19*d-26*e)*ln(2+x)

Rubi [A] (verified)

Time = 0.12 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {1600, 6874} \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {d-2 e}{12 (x+2)}-\frac {1}{18} (d+e) \log (1-x)+\frac {1}{48} (d+2 e) \log (2-x)+\frac {1}{6} (d-e) \log (x+1)-\frac {1}{144} (19 d-26 e) \log (x+2) \]

[In]

Int[((d + e*x)*(2 - x - 2*x^2 + x^3))/(4 - 5*x^2 + x^4)^2,x]

[Out]

(d - 2*e)/(12*(2 + x)) - ((d + e)*Log[1 - x])/18 + ((d + 2*e)*Log[2 - x])/48 + ((d - e)*Log[1 + x])/6 - ((19*d
 - 26*e)*Log[2 + x])/144

Rule 1600

Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \int \frac {d+e x}{(2+x)^2 \left (2-x-2 x^2+x^3\right )} \, dx \\ & = \int \left (\frac {d+2 e}{48 (-2+x)}+\frac {-d-e}{18 (-1+x)}+\frac {d-e}{6 (1+x)}+\frac {-d+2 e}{12 (2+x)^2}+\frac {-19 d+26 e}{144 (2+x)}\right ) \, dx \\ & = \frac {d-2 e}{12 (2+x)}-\frac {1}{18} (d+e) \log (1-x)+\frac {1}{48} (d+2 e) \log (2-x)+\frac {1}{6} (d-e) \log (1+x)-\frac {1}{144} (19 d-26 e) \log (2+x) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.93 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {1}{144} \left (\frac {12 (d-2 e)}{2+x}+24 (d-e) \log (-1-x)-8 (d+e) \log (1-x)+3 (d+2 e) \log (2-x)+(-19 d+26 e) \log (2+x)\right ) \]

[In]

Integrate[((d + e*x)*(2 - x - 2*x^2 + x^3))/(4 - 5*x^2 + x^4)^2,x]

[Out]

((12*(d - 2*e))/(2 + x) + 24*(d - e)*Log[-1 - x] - 8*(d + e)*Log[1 - x] + 3*(d + 2*e)*Log[2 - x] + (-19*d + 26
*e)*Log[2 + x])/144

Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.90

method result size
default \(\left (-\frac {19 d}{144}+\frac {13 e}{72}\right ) \ln \left (x +2\right )-\frac {-\frac {d}{12}+\frac {e}{6}}{x +2}+\left (\frac {d}{6}-\frac {e}{6}\right ) \ln \left (x +1\right )+\left (-\frac {d}{18}-\frac {e}{18}\right ) \ln \left (x -1\right )+\left (\frac {d}{48}+\frac {e}{24}\right ) \ln \left (x -2\right )\) \(64\)
risch \(\frac {d}{12 x +24}-\frac {e}{6 \left (x +2\right )}-\frac {\ln \left (x -1\right ) d}{18}-\frac {\ln \left (x -1\right ) e}{18}+\frac {\ln \left (x +1\right ) d}{6}-\frac {\ln \left (x +1\right ) e}{6}-\frac {19 \ln \left (-x -2\right ) d}{144}+\frac {13 \ln \left (-x -2\right ) e}{72}+\frac {\ln \left (2-x \right ) d}{48}+\frac {\ln \left (2-x \right ) e}{24}\) \(82\)
norman \(\frac {\left (-\frac {d}{12}+\frac {e}{6}\right ) x +\left (\frac {d}{12}-\frac {e}{6}\right ) x^{3}+\left (-\frac {d}{6}+\frac {e}{3}\right ) x^{2}+\frac {d}{6}-\frac {e}{3}}{x^{4}-5 x^{2}+4}+\left (-\frac {19 d}{144}+\frac {13 e}{72}\right ) \ln \left (x +2\right )+\left (-\frac {d}{18}-\frac {e}{18}\right ) \ln \left (x -1\right )+\left (\frac {d}{6}-\frac {e}{6}\right ) \ln \left (x +1\right )+\left (\frac {d}{48}+\frac {e}{24}\right ) \ln \left (x -2\right )\) \(101\)
parallelrisch \(\frac {3 \ln \left (x -2\right ) x d +6 \ln \left (x -2\right ) x e -8 \ln \left (x -1\right ) x d -8 \ln \left (x -1\right ) x e +24 \ln \left (x +1\right ) x d -24 \ln \left (x +1\right ) x e -19 \ln \left (x +2\right ) x d +26 \ln \left (x +2\right ) x e +6 \ln \left (x -2\right ) d +12 \ln \left (x -2\right ) e -16 \ln \left (x -1\right ) d -16 \ln \left (x -1\right ) e +48 \ln \left (x +1\right ) d -48 \ln \left (x +1\right ) e -38 \ln \left (x +2\right ) d +52 \ln \left (x +2\right ) e +12 d -24 e}{144 x +288}\) \(135\)

[In]

int((e*x+d)*(x^3-2*x^2-x+2)/(x^4-5*x^2+4)^2,x,method=_RETURNVERBOSE)

[Out]

(-19/144*d+13/72*e)*ln(x+2)-(-1/12*d+1/6*e)/(x+2)+(1/6*d-1/6*e)*ln(x+1)+(-1/18*d-1/18*e)*ln(x-1)+(1/48*d+1/24*
e)*ln(x-2)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.31 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=-\frac {{\left ({\left (19 \, d - 26 \, e\right )} x + 38 \, d - 52 \, e\right )} \log \left (x + 2\right ) - 24 \, {\left ({\left (d - e\right )} x + 2 \, d - 2 \, e\right )} \log \left (x + 1\right ) + 8 \, {\left ({\left (d + e\right )} x + 2 \, d + 2 \, e\right )} \log \left (x - 1\right ) - 3 \, {\left ({\left (d + 2 \, e\right )} x + 2 \, d + 4 \, e\right )} \log \left (x - 2\right ) - 12 \, d + 24 \, e}{144 \, {\left (x + 2\right )}} \]

[In]

integrate((e*x+d)*(x^3-2*x^2-x+2)/(x^4-5*x^2+4)^2,x, algorithm="fricas")

[Out]

-1/144*(((19*d - 26*e)*x + 38*d - 52*e)*log(x + 2) - 24*((d - e)*x + 2*d - 2*e)*log(x + 1) + 8*((d + e)*x + 2*
d + 2*e)*log(x - 1) - 3*((d + 2*e)*x + 2*d + 4*e)*log(x - 2) - 12*d + 24*e)/(x + 2)

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1188 vs. \(2 (60) = 120\).

Time = 7.10 (sec) , antiderivative size = 1188, normalized size of antiderivative = 16.73 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)*(x**3-2*x**2-x+2)/(x**4-5*x**2+4)**2,x)

[Out]

(d - 2*e)/(12*x + 24) + (d - e)*log(x + (-1534775*d**6 + 8032360*d**5*e - 984027*d**5*(d - e) - 12991180*d**4*
e**2 + 11797266*d**4*e*(d - e) + 3567168*d**4*(d - e)**2 + 1075200*d**3*e**3 - 32721528*d**3*e**2*(d - e) - 87
25248*d**3*e*(d - e)**2 - 247104*d**3*(d - e)**3 + 16959280*d**2*e**4 + 38977296*d**2*e**3*(d - e) - 2820096*d
**2*e**2*(d - e)**2 - 10357632*d**2*e*(d - e)**3 - 15836800*d*e**5 - 21294960*d*e**4*(d - e) + 15436800*d*e**3
*(d - e)**2 + 16277760*d*e**2*(d - e)**3 + 4283840*e**6 + 3876000*e**5*(d - e) - 6865920*e**4*(d - e)**2 - 407
8080*e**3*(d - e)**3)/(801262*d**6 - 4662251*d**5*e + 7296938*d**4*e**2 + 1388616*d**3*e**3 - 12447440*d**2*e*
*4 + 9990800*d*e**5 - 2380000*e**6))/6 - (d + e)*log(x + (-1534775*d**6 + 8032360*d**5*e + 328009*d**5*(d + e)
 - 12991180*d**4*e**2 - 3932422*d**4*e*(d + e) + 396352*d**4*(d + e)**2 + 1075200*d**3*e**3 + 10907176*d**3*e*
*2*(d + e) - 969472*d**3*e*(d + e)**2 + 9152*d**3*(d + e)**3 + 16959280*d**2*e**4 - 12992432*d**2*e**3*(d + e)
 - 313344*d**2*e**2*(d + e)**2 + 383616*d**2*e*(d + e)**3 - 15836800*d*e**5 + 7098320*d*e**4*(d + e) + 1715200
*d*e**3*(d + e)**2 - 602880*d*e**2*(d + e)**3 + 4283840*e**6 - 1292000*e**5*(d + e) - 762880*e**4*(d + e)**2 +
 151040*e**3*(d + e)**3)/(801262*d**6 - 4662251*d**5*e + 7296938*d**4*e**2 + 1388616*d**3*e**3 - 12447440*d**2
*e**4 + 9990800*d*e**5 - 2380000*e**6))/18 + (d + 2*e)*log(x + (-1534775*d**6 + 8032360*d**5*e - 984027*d**5*(
d + 2*e)/8 - 12991180*d**4*e**2 + 5898633*d**4*e*(d + 2*e)/4 + 55737*d**4*(d + 2*e)**2 + 1075200*d**3*e**3 - 4
090191*d**3*e**2*(d + 2*e) - 136332*d**3*e*(d + 2*e)**2 - 3861*d**3*(d + 2*e)**3/8 + 16959280*d**2*e**4 + 4872
162*d**2*e**3*(d + 2*e) - 44064*d**2*e**2*(d + 2*e)**2 - 80919*d**2*e*(d + 2*e)**3/4 - 15836800*d*e**5 - 26618
70*d*e**4*(d + 2*e) + 241200*d*e**3*(d + 2*e)**2 + 63585*d*e**2*(d + 2*e)**3/2 + 4283840*e**6 + 484500*e**5*(d
 + 2*e) - 107280*e**4*(d + 2*e)**2 - 7965*e**3*(d + 2*e)**3)/(801262*d**6 - 4662251*d**5*e + 7296938*d**4*e**2
 + 1388616*d**3*e**3 - 12447440*d**2*e**4 + 9990800*d*e**5 - 2380000*e**6))/48 - (19*d - 26*e)*log(x + (-15347
75*d**6 + 8032360*d**5*e + 328009*d**5*(19*d - 26*e)/8 - 12991180*d**4*e**2 - 1966211*d**4*e*(19*d - 26*e)/4 +
 6193*d**4*(19*d - 26*e)**2 + 1075200*d**3*e**3 + 1363397*d**3*e**2*(19*d - 26*e) - 15148*d**3*e*(19*d - 26*e)
**2 + 143*d**3*(19*d - 26*e)**3/8 + 16959280*d**2*e**4 - 1624054*d**2*e**3*(19*d - 26*e) - 4896*d**2*e**2*(19*
d - 26*e)**2 + 2997*d**2*e*(19*d - 26*e)**3/4 - 15836800*d*e**5 + 887290*d*e**4*(19*d - 26*e) + 26800*d*e**3*(
19*d - 26*e)**2 - 2355*d*e**2*(19*d - 26*e)**3/2 + 4283840*e**6 - 161500*e**5*(19*d - 26*e) - 11920*e**4*(19*d
 - 26*e)**2 + 295*e**3*(19*d - 26*e)**3)/(801262*d**6 - 4662251*d**5*e + 7296938*d**4*e**2 + 1388616*d**3*e**3
 - 12447440*d**2*e**4 + 9990800*d*e**5 - 2380000*e**6))/144

Maxima [A] (verification not implemented)

none

Time = 0.18 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.80 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=-\frac {1}{144} \, {\left (19 \, d - 26 \, e\right )} \log \left (x + 2\right ) + \frac {1}{6} \, {\left (d - e\right )} \log \left (x + 1\right ) - \frac {1}{18} \, {\left (d + e\right )} \log \left (x - 1\right ) + \frac {1}{48} \, {\left (d + 2 \, e\right )} \log \left (x - 2\right ) + \frac {d - 2 \, e}{12 \, {\left (x + 2\right )}} \]

[In]

integrate((e*x+d)*(x^3-2*x^2-x+2)/(x^4-5*x^2+4)^2,x, algorithm="maxima")

[Out]

-1/144*(19*d - 26*e)*log(x + 2) + 1/6*(d - e)*log(x + 1) - 1/18*(d + e)*log(x - 1) + 1/48*(d + 2*e)*log(x - 2)
 + 1/12*(d - 2*e)/(x + 2)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.86 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=-\frac {1}{144} \, {\left (19 \, d - 26 \, e\right )} \log \left ({\left | x + 2 \right |}\right ) + \frac {1}{6} \, {\left (d - e\right )} \log \left ({\left | x + 1 \right |}\right ) - \frac {1}{18} \, {\left (d + e\right )} \log \left ({\left | x - 1 \right |}\right ) + \frac {1}{48} \, {\left (d + 2 \, e\right )} \log \left ({\left | x - 2 \right |}\right ) + \frac {d - 2 \, e}{12 \, {\left (x + 2\right )}} \]

[In]

integrate((e*x+d)*(x^3-2*x^2-x+2)/(x^4-5*x^2+4)^2,x, algorithm="giac")

[Out]

-1/144*(19*d - 26*e)*log(abs(x + 2)) + 1/6*(d - e)*log(abs(x + 1)) - 1/18*(d + e)*log(abs(x - 1)) + 1/48*(d +
2*e)*log(abs(x - 2)) + 1/12*(d - 2*e)/(x + 2)

Mupad [B] (verification not implemented)

Time = 7.95 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.90 \[ \int \frac {(d+e x) \left (2-x-2 x^2+x^3\right )}{\left (4-5 x^2+x^4\right )^2} \, dx=\frac {\frac {d}{12}-\frac {e}{6}}{x+2}+\ln \left (x+1\right )\,\left (\frac {d}{6}-\frac {e}{6}\right )-\ln \left (x-1\right )\,\left (\frac {d}{18}+\frac {e}{18}\right )+\ln \left (x-2\right )\,\left (\frac {d}{48}+\frac {e}{24}\right )-\ln \left (x+2\right )\,\left (\frac {19\,d}{144}-\frac {13\,e}{72}\right ) \]

[In]

int(-((d + e*x)*(x + 2*x^2 - x^3 - 2))/(x^4 - 5*x^2 + 4)^2,x)

[Out]

(d/12 - e/6)/(x + 2) + log(x + 1)*(d/6 - e/6) - log(x - 1)*(d/18 + e/18) + log(x - 2)*(d/48 + e/24) - log(x +
2)*((19*d)/144 - (13*e)/72)